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Although transport phenomena involve many particles, the entire description
can be framed in terms of single-particle eigenstates, which are thus crucial.
This chapter is motivated by this central idea. Skills such as probing charge
density, predicting current flow through a device, and estimating noise are typi-
cal outcomes expected from a robust transport theory. Despite ’charge density’
and ’current’ being many-particle quantities, it is beneficial to consider them
when solving the single-particle Schrödinger equation. Ultimately, macroscopic
charge and current densities are statistical sums of microscopic densities car-
ried by single-particle states or arising from transitions between them. There-
fore, it makes sense to examine single-particle eigenstates from this perspective.
Associating a charge density with a single-particle wave function is relatively
straightforward. Generally, if Φ(r, t) is the wave function of a single-particle
state |Φ(t)⟩, then |Φ(r, t)|2 represents the probability density of finding the par-
ticle at position r when it is in the time-dependent state |Φ(t)⟩. Intuitively, the
charge density of the corresponding state |Φ(t)⟩ for a particle with charge q is
given by:

ρ(r, t) = q|Φ(r, t)|2 (1)

for a particle with charge. Moreover, it is possible to define a current density
J(r, t) for the state |Φ(t)⟩ to satisfy the continuity equation:

∇ · J(r, t) + ∂ρ(r, t)

∂t
= 0 (2)

Starting from the time-dependent Schrödinger equation in the position rep-
resentation, it can be shown that:

J(r, t) = − iqh̄

2m
[Φ∗(r, t)∇Φ(r, t)−(∇Φ∗(r, t))Φ(r, t)] = −qh̄

m
ℑ{(∇Φ∗(r, t))Φ(r, t)

(3)
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is the appropriate expression for the current density. From this equation, we
deduce that single states can carry current only if their wave functions have a
non-zero imaginary component. If |Φ⟩ is an energy eigenstate, meaning it is an
eigenvector of the one-particle Hamiltonian, the time variable t can be omitted.
In this case, the continuity equation simplifies to:

∇ · J(r) = 0 (4)

implying that the current is incompressible. The solution of the Schrödinger
equation for a particle in a constant potential is notable for several reasons.
Firstly, it requires minimal mathematical effort. If we denote the constant
potential energy by U0, Schrödinger’s equation can be rewritten as:

∇2ϕ(r) + αϕ(r) = 0 (5)

where α is independent of the position vector r:

α =
2m

h̄2 (E − U0). (6)

If the domain Ω has a simple geometry (such as rectangular boxes, cylinders,
spheres, etc.) where the coordinate surfaces align with the domain boundaries,
can be solved by separation of variables. For more detailed treatments and
examples of this technique, we refer to standard textbooks on mathematical
physics and quantum mechanics, such as those by Morse and Feshbach, and
Flügge. Additionally, the constant potential is an idealization of the periodic
crystal potential that governs perfect metals and semiconductors, at least when
considered infinite in all directions.
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