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Statistical correlation coefficientst@ f # introduced by Kutzelnigget al. @Phys. Rev.172, 49 ~1968!#
provide overall measures of the difference between the electron-pair density and the product of
single-electron densities, wheref 5 f (r ) is a probe function. It is shown that the angular correlation
coefficient t@r #, a particular case oft@ f # for f (r )5r , is simply expressible in terms of the
generalized electron-pair moments^q2& (a,b) with two real-valued parametersa andb. Especially, the
relation for a5b51 means thatt@r # is nothing but the difference between the center-of-mass
motion and relative motion contributions in the second electron-pair moments. Conversely, the
electron-pair momentŝq2& (a,b) are obtained from the single-electron moment^( i r i

2& and the
correlation coefficientt@r #. The same is also true in momentum space. ©2001 American Institute
of Physics. @DOI: 10.1063/1.1405010#
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I. INTRODUCTION

In quantum chemistry, the electron correlation usua
means~see, e.g., Ref. 1! the difference in the electron motio
between the exact and Hartree–Fock solutions. Howe
there is another definition for the term correlation. When
concepts from mathematical statistics and probability the
are applied, the electron correlation means2 the manner in
which the electron-pair density differs from the product
single-electron densities, and is described by the pair co
lation density2 with six variables. In order to have simpl
numerical indices which provide overall measures for
statistical correlation of electrons, Kutzelnigget al.3 intro-
duced statistical correlation coefficientst@ f # defined by

t@ f #[

2NK (
i , j

f ~r i ! f ~r j !L 2~N21!K (
i

f ~r i !L 2

~N21!S NK (
i

f 2~r i !L 2K (
i

f ~r i !L 2D , ~1!

where f (r ) is a probe function and the angular brackets^ &
stand for the expectation value over theN-electron (N>2)
wave functionC(x1 ,...,xN) with xi[(r i ,s i) being the com-
bined position-spin coordinates of the electroni. The statis-
tical correlation coefficients are bound3 as 21<t@ f #<11,
and electrons are perfectly correlated ift@ f #561, while
they are independent or uncorrelated ift@ f #50. In a particu-
lar case off (r )5r , the correlation coefficientt@ f # for atoms
simplifies to

t@r #52K (
i , j

r i•r j L Y F ~N21!K (
i

r i
2L G , ~2!

andt@r # is called the angular correlation coefficient, becau
r i•r j5r i r j cosuij , where r i5ur i u and u i j is the angle
spanned by the two position vectors. Statistical correlat
coefficientst@ f̄ # in momentum space are also defined
replacing f (r ) with f̄ (p) in Eq. ~1! and by considering the
expectation value over the momentum wave funct
6840021-9606/2001/115(15)/6847/6/$18.00
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F(y1 ,...,yN), where yi[(pi ,s i) is the combined
momentum-spin coordinates of the electroni. Analogous to
t@ f #, the momentum-space correlation coefficientt@ f̄ # is
bound by61, and its particular case forf̄ (p)5p gives the
momentum angular correlation coefficient,

t@p#52K (
i , j

pi•pj L Y F ~N21!K (
i

pi
2L G . ~3!

Some numerical results oft@ f # were given in Ref. 3 for
simple atoms and molecules. For helium and its isoelectro
analogs, the correlation coefficients were studied4–6 in detail
not only in their ground states but also in many excit
states. The Be-like ions were examined in Ref. 7. Thak
pointed out8 that the angular correlation coefficientt@r # is
connected with the form factor, the incoherent scatter
function, and the minus first moment of the dipole oscilla
strength density, and calculatedt@r # for the first-row atoms.
The t@r # values for atoms He through Si were given b
Pathak9 within the Hohenberg–Kohn–Sham density fun
tional formalism. The statistical correlation coefficients we
also examined in momentum space for He-like atoms,10,11

Li-like atoms,12 and HeH1 molecule.13 Using the exactly
soluble ‘‘harmonium’’ atom, King and Rothstein discussed14

that the correlation measured in the statistical sense doe
necessarily measure the electron correlation in the energ
sense.

In the present paper, we show that the angular corr
tion coefficientt@r # can be simply expressed by means
the second momentŝq2& (a,b) of the generalized electron
pair densityg(q;a,b). A special case ofa5b51 implies
thatt@r # is nothing but the difference between the center-
mass motion~extracule! and relative motion~intracule! con-
tributions measured by the second electron-pair mome
Conversely, the second electron-pair moments^q2& (a,b) are
obtained from the single-electron moment^( i r i

2& and the
angular correlation coefficientt@r #. We find that the momen
^q2& (1,b) takes the minimum atb52t@r #, and for statisti-
7 © 2001 American Institute of Physics
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cally uncorrelated wave functions the single-electron m
ment ^( i r i

2& multiplied by (N21)/2 is the minimum of the
electron-pair momentŝq2& (1,b) . Hartree atomic units are
used throughout.

II. ANGULAR CORRELATION COEFFICIENTS IN
TERMS OF SECOND ELECTRON-PAIR MOMENTS

The generalized electron-pair density functiong(q;a,b)
is defined15,16 by

g~q;a,b![~4pq2!21K (
i , j

d(q2uar i1br j u)L , ~4!

where a and b are real-valued parameters andd(x) is the
one-dimensional Dirac delta function. The generaliz
electron-pair densityg(q;a,b) represents the probabilit
density function for the magnitudeuar i1br j u of the two-
electron vectorar i1br j of any pair of electronsi andj to be
q, and is normalized toN(N21)/2, the number of electron
pairs. The functiong(q;a,b) with a51 is of our particular
interest, sinceg(q;1,b) smoothly connects16 the single-
electron densityr(r ), the electron-pair intraculeh(u), and
extraculed(R) densities17–21 as a function of the paramete
b, which were originally defined in a completely independe
manner. Namely, g(q;1,21)5h(q), g(q;1,0)5@(N
21)/2#r(q), and g(q;1,11)5d(q/2)/8, where the last
equality follows from a scaling relation15 of g(q;a,b).

If we introduce the momentŝqk& (a,b) of the density
g(q;a,b),

^qk& (a,b)[4pE
0

`

dqqk12g~q;a,b!5K (
i , j

uar i1br j ukL ,

~5!

then the second moments^q2& (a,b) are known22,23 to satisfy
the sum rules

^q2& (a,b)1^q2& (a,2b)5~a21b2!~N21!K (
i

r i
2L , ~6a!

^q2& (a,b)2^q2& (a,2b)54abK (
i , j

r i•r j L . ~6b!

Therefore, the angular correlation coefficientt@r #, given by
Eq. ~2!, is rewritten in general as

t@r #5
~a821b82!~^q2& (a,b)2^q2& (a,2b)!

2ab~^q2& (a8,b8)1^q2& (a8,2b8)!
, ~7a!

whereabÞ0 but it may happen thata85a and/orb85b.
Apart from the constant (a821b82)/(2ab), the correlation
coefficientt@r # is the ratio between the difference and t
sum of two sets of the second electron-pair moments, wh
are symmetric with respect to the second parameterb or b8.
For a special case ofa85a andb850, Eq. ~7a! reduces to

t@r #5
a~^q2& (a,b)2^q2& (a,2b)!

4b^q2& (a,0)

. ~7b!

Since the right-hand side of Eq.~7b! is the product of
a/(2^q2& (a,0)) and (̂ q2& (a,b)2^q2& (a,2b))/(2b), Eq. ~7b!
means that for a given value ofa, t@r # is proportional to the
-

d

t

h

slope of the moment̂q2& (a,b) as a function of the paramete
b. If we consider the zero-b limit, Eq. ~7b! is therefore re-
written as

t@r #5
a

2 F ]

]b
ln^q2& (a,b)G

b50

. ~7c!

For a851, b850, andabÞ0, Eq. ~7a! yields

t@r #5
1

2ab H ^q2& (a,b)

^q2& (1,0)

2~a21b2!J . ~7d!

Another special case of Eq.~7a! for a5a85b5b851 reads

t@r #5
4^R2&2^u2&

4^R2&1^u2&
, ~7e!

since15 ^qk& (1,21)5^uk& and^qk& (1,11)52k^Rk&, where^uk&
and ^Rk& are the intracule and extracule moments17–21 asso-
ciated with the electron-pair densitiesh(u) and d(R), re-
spectively. Equation~7e! shows thatt@r # essentially mea-
sures the difference between the center-of-mass and rel
motions of electron pairs through the second moments.

When we introduce15,16 the generalized electron-pa
density ḡ(t;a,b) and associated moments^tk& (a,b) in mo-
mentum space,

ḡ~ t;a,b![~4pt2!21K (
i , j

d~ t2uapi1bpj u)L , ~8!

^tk& (a,b)[4pE
0

`

dttk12ḡ~ t;a,b!5K (
i , j

uapi1bpj ukL ,

~9!

exactly the same discussion as in position space result
several rigorous relations betweent@p# and ^t2& (a,b) . For
example, the relations corresponding to Eqs.~7a! and ~7e!
are

t@p#5
~a821b82!~^t2& (a,b)2^t2& (a,2b)!

2ab~^t2& (a8,b8)1^t2& (a8,2b8)!
, ~10a!

t@p#5
4^P2&2^v2&

4^P2&1^v2&
, ~10b!

where ^vk& and ^Pk& are the moments18–21 associated with
the electron-pair intraculeh̄(v) and extraculed̄(P) densities
in momentum space, respectively.

III. SECOND ELECTRON-PAIR MOMENTS IN TERMS
OF ANGULAR CORRELATION COEFFICIENTS

Above we have shown that the angular correlation co
ficient t@r # can be simply obtained from the second electro
pair momentŝ q2& (a,b) . Conversely, the momentŝq2& (a,b)

are expressible in terms of the single-electron mome
^( i r i

2& and the correlation coefficientt@r #. Combining Eqs.
~2!, ~6a!, and~6b!, we have

^q2& (a,b)5
1
2~N21!K (

i
r i

2L ~a21b212abt@r # !

5^q2& (1,0)~a21b212abt@r # !, ~11a!
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FIG. 1. The Hartree–Fock limit angu
lar correlation coefficientst@r # in po-
sition space as a function of atomi
numberZ.
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whose particular cases fora5b51 ~extracule moment! and
a52b51 ~intracule moment! are:

^R2&5 1
4~N21!K (

i
r i

2L ~11t@r # !, ~11b!

^u2&5~N21!K (
i

r i
2L ~12t@r # !. ~11c!

Equations ~11a!–~11c! are consistent with a genera
relation23

^q2& (a,b)5~a1b!2^R2&1 1
4~a2b!2^u2&. ~12!

For a51, Eq. ~11a! is rearranged as

^q2& (1,b)5
1
2~N21!K (

i
r i

2L $~b1t@r # !2112t2@r #%.

~13!

Thus the moment̂q2& (1,b) is a quadratic function ofb and
takes the minimum 1

2(N21)^( i r i
2&(12t2@r #) at b

52t@r #. For uncorrelated wave functions,t@r #50 and
hence the single-electron moment^( i r i

2&, multiplied by (N
21)/2, is the minimum of the electron-pair moment^q2& (1,b)

as a function of the parameterb. If we consider the region
21<b<11, Eq. ~13! says that the maximum of̂q2& (1,b)

occurs for the intracule moment̂u2&5^q2& (1,21) when
t@r #,0 while for the extracule moment 4^R2&5^q2& (1,11)

whent@r #.0. From Eqs.~11b! and ~11c!, we also find

4^R2&2^u2&52~N21!K (
i

r i
2L t@r #, ~14!

which implies that the equality in an approxima
isomorphism,15 ^u2&>4^R2&, occurs only whent@r #50.

Based on Eq.~6a! with a5b51, it has been pointed ou
in the literature22 that the single-electron moment^( i r i

2& can
be precisely decomposed into the contributions from
relative ~rel! and center-of-mass~com! motions.
e

K (
i

r i
2L 5K (

i
r i

2L
rel

1K (
i

r i
2L

com

, ~15a!

K (
i

r i
2L

rel

5
^u2&

2~N21!
, K (

i
r i

2L
com

5
2^R2&
N21

. ~15b!

Then the ratio of the two contributions is

K (
i

r i
2L

rel

Y K (
i

r i
2L

com

5^u2&/~4^R2&!

5~12t@r # !/~11t@r # !,
~16!

which clarifies that the relative motion contribution is larg
if t@r #,0, whereas the center-of-mass motion contribut
is if t@r #.0.

The corresponding expressions for^t2& (a,b) , ^v2&, ^P2&,
and related quantities, in terms of^( i pi

2& andt@p#, are im-
mediately obtained from the above results in position spa
if the names of variables are appropriately replaced w
their momentum-space counterparts. The mathematical s
ture remains unaltered, and the same discussion as in p
tion space holds in momentum space as well.

IV. NUMERICAL RESULTS

In position space, systematic data of the electron-p
intracule^u2& and extraculêR2& moments were reported in
Refs. 24–26 at the Hartree–Fock limit level for the 102
oms from He~atomic numberZ52) to Lr (Z5103) in their
experimental ground states.27,28 Using these data, we hav
calculated the angular correlation coefficientst@r # based on
Eq. ~7e!. The results are plotted in Fig. 1 as a function ofZ.
For the first three atoms He, Li, and Be, where onlys orbitals
are occupied,t@r # is zero, and the electrons are statistica
uncorrelated when measured by the probe functionf (r )5r .
For the remaining 99 atoms, the correlation coefficients
negative with no exceptions. These electrons are negati
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TABLE I. Comparison of the angular correlation coefficientst@r # in position space.

Atom
Density-

functionala
Configuration
interactionb

Calculated from
electron-pair moments

Hartree–Fock
limit c

Explicitly
correlatedd

He 20.040 87 20.054 14e 0 20.054 242
Li 20.033 29 20.0032 0 20.004 089
Be 20.061 79 20.0975 0 20.080 083
B 20.099 30 20.0816 20.044 043 20.070 145
C 20.053 50 20.0688 20.051 095 20.065 773
N 20.054 00 20.0569 20.050 444 20.056 535
O 20.050 53 20.0576 20.046 171 20.051 658
F 20.046 55 20.0479 20.042 321 20.046 520
Ne 20.043 87 20.0463 20.039 030 20.044 461

aHohenberg–Kohn–Sham method with Bartolotti exchange-correlation functional. Reference 9.
bReference 8 except He.
cCalculated from the Hartree–Fock limit^u2& and ^R2& values in Refs. 24, 25.
dCalculated from the explicitly correlated̂u2& and ^R2& values in Refs. 30–35.
eCalculated from the data in Ref. 36.
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we
correlated or the angleu i j spanned by two position vectorsr i

andr j is greater thanp/2 in an average sense. The values
t@r # in Fig. 1 show a periodic behavior reflecting the valen
electronic configuration: Within a period, the values are g
erally larger when the valencep subshell is occupied. The
difference in the valences0, s1, and s2 configurations is
clearly observed for the first (Z521– 30) and second (Z
539– 48) transition atoms. The magnitude of the nega
correlation decreases in general asZ increases. This is due t
the fact that the denominator 4^R2&1^u2& in Eq. ~7e!
steadily increases with the increasing number of elect
pairs, while some electron pairs give29 zero contribution to
the numerator 4̂R2&2^u2&. The result can also be inte
preted as that the increase in nuclear charge contribute
make electrons more hydrogenic or independent. Within
Hartree–Fock approximation, the largest negative correla
is observed for the carbon atom, wheret@r #520.051.

For the nine atoms He through Ne, the moments^u2&
and^R2& from explicitly correlated (r i j -terms in wave func-
tions! calculations are also available in the literature.30–35 In
Table I, the angular correlation coefficientst@r # from the
explicitly correlated wave functions are compared with tho
from the Hartree–Fock limit wave functions and with tho
from density-functional8 and configuration interaction9,36cal-
culations. When we go beyond the Hartree–Fock approxi
tion, all the atoms, including He–Be, have negative corre
tion coefficients and the so-called electron correlation eff
works to increase the magnitudes of negative angular co
lations. Within the second period atoms, the magnitu
ut@r #u from the explicitly correlated and configuration inte
action calculations is largest for the Be atom, and monoto
cally ~except the O atom in the configuration interaction
sults! decreases toward the Ne atom. However, the dens
functional calculations predict the greatest negat
correlation for the B atom. The negative angular correlat
of electrons is exceptionally small in the Li atom with
singly occupied valences shell.

In all the calculations, the values oft@r # in position
space are negative or zero. According to Eq.~16!, this im-
f
e
-

e

n

to
e
n

e

a-
-
t
e-
e
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-
y-
e
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plies that the relative motion contribution is never smal
than the center-of-mass motion contribution, when
single-electron moment̂( i r i

2& is partitioned.
In momentum space, the Hartree–Fock limit values

the second intraculêv2& and extraculê P2& moments were
reported in Refs. 24, 25, 37 for the 102 atoms from He to
The momentum angular correlation coefficientst@p# have
been calculated based on Eq.~10b! and are plotted in Fig. 2
as a function ofZ. Again we find that the correlation coeffi
cients are zero for the first three atoms, and are negative
the remaining 99 atoms. TheZ dependence oft@p# shows a
simple structure with a single minimum at the Ne ato
where the negative correlation is largest (t@p#520.013) in
momentum space. The result suggests that the momen
space angular correlation coefficient predominantly refle
the statistical correlation of inner electrons. Among inn
electron pairs, the 1s2p and 2s2p pairs are considered to b
the major origin, since the orbital pairs with the same inv
sion symmetry give29 vanishing contributions to 4̂P2&
2^v2&. Therefore, thet@p# value decreases until the 2p sub-
shell is fully occupied at the Ne atom, and after that it grad
ally increases for the same reason as in position space.

The momentum-space angular correlation coefficie
t@p# have also been calculated from the explicitly correla
values34,38 of the electron-pair momentŝv2& and ^P2& for
the atoms He through Ne. Table II summarizes the res
and compares them with the corresponding Hartree–F
limit and configuration interaction values. In the table, t
electron correlation effect is found to increase thet@p# val-
ues for all the nine atoms. In fact,t@p# is positive for the
four atoms He–B. In these atoms, the average angleū i j be-
tween two momentum vectorspi andpj is less thanp/2, and
the momenta of two electrons tend to be directed to the s
direction. Krauseet al.11 proposed for the He atom a class
cal picture of bending and antisymmetric stretching motio
of two electrons for the positive value oft@p#. However,
t@p# changes to a negative value for the atoms C–Ne and
momenta of two electrons tend to be directed to the oppo
directions, as we observed in position space. At present,
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FIG. 2. The Hartree–Fock limit angu
lar correlation coefficientst@p# in mo-
mentum space as a function of atom
numberZ.
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do not have any answer to the question why the sign oft@p#
switches between the B and C atoms, and we have to a
further investigations. Table II also shows that in moment
space, the inclusion of electron correlation effects redu
the magnitude of the statistical correlation of electrons
atoms C–Ne. Clearly, the results are not parallel to th
obtained in position space and suggest that the problem
the electron correlations should be studied in both space

Finally, we note that the magnitudes oft@r # and t@p#
are small and never exceed 0.1 in all the cases exami
Since Eq.~13! says that̂ q2& (1,b) takes the minimum atb
52t@r #, a single-electron property@(N21)/2#^( i r i

2&
5^q2& (1,0) is very close to the minimum value of the gene
alized electron-pair moment^q2& (1,b) as a function ofb. The
same discussion holds for the corresponding moment
space propertieŝt2& (1,b) and @(N21)/2#^( i pi

2&5^t2& (1,0) .

TABLE II. Comparison of the angular correlation coefficientst@p# in mo-
mentum space.

Atom
Configuration

interaction

Calculated from
electron-pair moments

Hartree–Fock
limit a

Explicitly
correlatedb

He 10.055 931c 0 10.054 569
Li 10.022 020d 0 10.018 197
Be 0 10.009 744
B 20.004 126 10.004 641
C 20.007 398 20.002 141
N 20.009 740 20.006 559
O 20.011 170 20.007 131
F 20.012 212 20.008 483
Ne 20.012 946 20.010 135

aCalculated from the Hartree–Fock limit^v2& and^P2& values in Refs. 24,
25.

bCalculated from the explicitly correlated^v2& and^P2& values in Refs. 34,
37.

cCalculated from the data in Ref. 13.
dCalculated from the data in Ref. 12.
ait
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r
e
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.
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V. SUMMARY

We have shown that the angular correlation coeffici
t@r # is simply expressed in terms of the generalized electr
pair momentŝ q2& (a,b) with two real-valued parametersa
andb. In particular, the relation fora5b51 means thatt@r #
measures the difference between the center-of-mass mo
and relative motion contributions of electrons by means
the second electron-pair moments. Conversely, the elect
pair momentŝ q2& (a,b) are obtained from the single-electro
moment ^( i r i

2& and the correlation coefficientt@r #. The
same is also true in momentum space. Numerical result
the angular correlation coefficientst@r # in position space
andt@p# in momentum space have been presented and
cussed for neutral atoms in their ground states.
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