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Statistical correlation coefficientg f] introduced by Kutzelniggt al.[Phys. Rev172 49 (1968

provide overall measures of the difference between the electron-pair density and the product of
single-electron densities, whefe= f(r) is a probe function. It is shown that the angular correlation
coefficient 7{r], a particular case of{f] for f(r)=r, is simply expressible in terms of the
generalized electron-pair mome|<1q‘>2)(a,b) with two real-valued parameteasandb. Especially, the
relation fora=b=1 means that{r] is nothing but the difference between the center-of-mass
motion and relative motion contributions in the second electron-pair moments. Conversely, the
electron-pair momentgq?), ) are obtained from the single-electron moménr?) and the
correlation coefficient{r]. The same is also true in momentum space.2@1 American Institute

of Physics. [DOI: 10.1063/1.1405010

I. INTRODUCTION ®(y1,....yn), Wwhere y=(pj,o;) is the combined

In quantum chemistry, the electron correlation usua”ymomentum-spln coordinates of the eIectnorAnang(Es to

meanssee, e.g., Ref.)tthe difference in the electron motion 7Lf], the momentum-space correlation coefficieiif] is
between the exact and Hartree—Fock solutions. Howevehound by*1, and its particular case fdi(p)=p gives the
there is another definition for the term correlation. When themomentum angular correlation coefficient,

concepts from mathematical statistics and probability theory
r[p]=2<i2<j pi-p;>/ (N—1)<Ei pi2> :

are applied, the electron correlation méeattee manner in

which the electron-pair density differs from the product of

Single-electron densities, and is described by the pair corre-  Some numerical results o-tf] were given in Ref. 3 for
lation density with six variables. In order to have simple simple atoms and molecules. For helium and its isoelectronic
numerical indices which provide overall measures for theanalogs, the correlation coefficients were stutfiéih detail
statistical correlation of eleCtronS, Kutzelnigij a|.3 intro- not 0n|y in their ground states but also in many excited

©)

duced statistical correlation coefficientsf] defined by states. The Be-like ions were examined in Ref. 7. Thakkar
2 pointed ouf that the angular correlation coefficienfr] is
2N<E f(ri)f(rj)>_(N_1)<E f(ri)> connected with the form factor, the incoherent scattering
A= — : ,— (1 function, and the minus first moment of the dipole oscillator
(N—l)( N< 2 f2(r-)> —<E f(r-)> ) strength density, and calculatefir | for the first-row atoms.
i ' i ! The #r] values for atoms He through Si were given by

PathaR within the Hohenberg—Kohn—Sham density func-
tional formalism. The statistical correlation coefficients were
also examined in momentum space for He-like atofs,
Li-like atoms!? and HeH molecule!® Using the exactly
soluble “harmonium” atom, King and Rothstein discus¥ed
that the correlation measured in the statistical sense does not
necessarily measure the electron correlation in the energetic
sense.

In the present paper, we show that the angular correla-
tion coefficient7[r] can be simply expressed by means of
the second moment@qz)(a,b) of the generalized electron-

wheref(r) is a probe function and the angular brackgejs
stand for the expectation value over tNeelectron N=2)
wave function¥ (x4, ...,Xy) with x;=(r;,0;) being the com-
bined position-spin coordinates of the electiofhe statis-
tical correlation coefficients are bouhds — 1< f]<+1,
and electrons are perfectly correlated#ff ]= =1, while
they are independent or uncorrelated{if ]=0. In a particu-
lar case off(r)=r, the correlation coefficient| f ] for atoms

simplifies to

- _ 2

T[r]_2<i2<j ri'rj>/ (N 1)<Z ri> ' (2) pair densityg(qg;a,b). A special case oh=b=1 implies

) ] o that 7 r] is nothing but the difference between the center-of-
and7{r] is called the angular correlation coe_sz|C|ent, becausgyass motior(extraculé and relative motior(intraculé con-
Fi-rj=rir;cosé;, where _r_i:|ri| and 6 is the angle yihytions measured by the second electron-pair moments.
spanned by the two position vectors. Statistical Co”elat'ortonversely the second electron-pair mome(m%)(a ) are
coefficients7{ ] in momentum space are also defined byobtained from the single-electron momef¥;r?) and the
replacingf(r) with f(p) in Eq. (1) and by considering the angular correlation coefficien{r]. We find that the moment
expectation value over the momentum wave function(q2>(1,b) takes the minimum ab= —7{r], and for statisti-
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cally uncorrelated wave functions the single-electron mo=slope of the momentg? )(ab) @s a function of the parameter

ment(2|r|> multiplied by (N—1)/2 is the minimum of the b. If we consider the zerb-limit, Eq. (7b) is therefore re-

electron-pair momentgq? )p) - Hartree atomic units are
used throughout.

IIl. ANGULAR CORRELATION COEFFICIENTS IN
TERMS OF SECOND ELECTRON-PAIR MOMENTS

The generalized electron-pair density functip(y;a,b)
is defined®!® by

g(g;a,b)=(4mg*)~* Z, 5(q—lari+br;|)>, (4)
wherea and b are real-valued parameters aa(x) is the
one-dimensional
electron-pair densityg(q;a,b) represents the probability
density function for the magnitudfar;+br;| of the two-
electron vectoar;+ br; of any pair of electrongandj to be
g, and is normalized tt&N(N—1)/2, the number of electron
pairs. The functiorg(q;a,b) with a=1 is of our particular
interest, sinceg(q;1,b) smoothly connect§ the single-
electron densityp(r), the electron-pair intracula(u), and

Dirac delta function. The generalized

written as
rl=5 [&b In(a%)a, b)L=o (70
Fora’'=1,b’'=0, andab+0, Eq. (79 yields
(9? )(a,b)
r]= [ —(a%+b?) . (7d)
2ab <q2>(1 0)
Another special case of E(ra) fora=a’=b=b’=1 reads
4(R?)—(u?
e MR- 78
4(R?)+(u?)

sinc€® (q) (1, 1y=(u") and(q)1,+1)=2(R"), where(u*)
and(RX) are the intracule and extracule moméfié' asso-
ciated with the electron-pair densitiégu) and d(R),
spectively. Equatior(7e) shows that7{r] essentially mea-
sures the difference between the center-of-mass and relative
motions of electron pairs through the second moments.
When we introduce"® the generalized electron-pair

extraculed(R) densitie$’ 2! as a function of the parameter density g(t;a,b) and associated momen{s*) () in mo-
b, which were originally defined in a completely independentmentum space,

manner. Namely, g(g;1,—1)=h(qg), 9(q;1,0)=[(N
—1)/2]p(q), and g(q;1,+1)=d(g/2)/8, where the last
equality follows from a scaling relatidhof g(q;a,b).

If we introduce the moment$qk>(a,b) of the density

g(a;a,b),

<qk>(a,b)5477f0 dqqk+zg(q;a,b)=<i2<j |ari+brj|k>,
(5)

then the second momentg?), ) are knowd***to satisfy
the sum rules

(a%) @) T (4% @ -by=(a®+b?)(N— 1)< Z/ r,2> , (63

<q2>(a,b)_<q2>(a,—b):4ab<i2<j ri'rj>- (6b)

Therefore, the angular correlation coefficiefit |, given by
Eq. (2), is rewritten in general as

(@"2+0"%) (9 a0y~ (d%)(a,-b))
2ab((9%) a b1y +{A*)(ar,~b"))

whereab#0 but it may happen thaa’=a and/orb’=b.
Apart from the constanta(?+b’?)/(2ab), the correlation

mr]= , (7a)

coefficient7[r] is the ratio between the difference and the

5<t;a,|o>z<zwt2>-1<i2<j 5<t—|api+bpj|)>. (8)

<tk>(a,b)547TJ:dttk+25(t;a,b)=<2 |api+bpj|k>,
i<j

9)

exactly the same discussion as in position space results in
several rigorous relations betweefip] and(tz)(a,b). For
example, the relations corresponding to E(&) and (7¢)

are

(@"2+b"2)((t*) @by~ (t*)(a 1))

71pl= , 10

(p] 2ab((t*) ar,pry  {(t*)ar,~ b)) (109
4P (?)

r[p]—4<P2>+< 2y (10b)

where (v¥) and (P¥) are the moment8=2! associated with

the electron-pair mtraculh(v) and extraculei(P) densities
in momentum space, respectively.

IlI. SECOND ELECTRON-PAIR MOMENTS IN TERMS
OF ANGULAR CORRELATION COEFFICIENTS

Above we have shown that the angular correlation coef-

sum of two sets of the second electron-pair moments, whickicient 7[r] can be simply obtained from the second electron-

are symmetric with respect to the second parantetarb’.
For a special case @' =a andb’=0, Eq.(7a reduces to

a({(a%)ap)—(0° >(afb))
4b(0?) (a0)

Since the right-hand side of Ed7b) is the product of

a/(2(0%)(a0) and (a%)(ap)— (9%, -1)/(2b), Eq. (7b)
means that for a given value af 7{r] is proportional to the

mr]= (7b)

pair moments(g®)a ). Conversely, the moments|®) , 1)

are expressible in terms of the single-electron moments
(2ir?) and the correlation coefficien{r]. Combining Egs.
(2), (6a), and(6h), we have

<q2>(a,b):%(N—1)< Z r,2> (a%+b2+2ab7r])

=(0%)1,0(@%+b*+2abrr]), (113
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whose particular cases far=b=1 (extracule momentand
a=—b=1 (intracule momentare:

(R2>=%(N—l)<2 r?>(1+f[r]), (11b)

<u2>=(N—1)<2i r?>(1—r[r]>. (119

Equations (11a—(11¢9 are consistent with a general
relatior?*
(0%)(ab)=(a+b)(R?)+i(a—b)Xu?).

Fora=1, Eq.(119 is rearranged as

12

(%) (1p)=3(N— 1)< 2. ri2>{(b+ Ar])?+1-7r]}.
(13

Thus the momen(q2>(1 b) is a quadratic function ob and
takes the minimum {(N—1)}(Z;r3(1—7qr]) at b
—7[r]. For uncorrelated wave functions{r]=0 and
hence the single-electron momei;r?), multiplied by (N
—1)/2, is the minimum of the electron-pair momtéq?)(l,b)
as a function of the parametbr If we consider the region
—1<b<+1, Eq.(13) says that the maximum dfg? )(1b)
occurs for the intracule momentu?)=(q? >(1 ), when
7[r]<0 while for the extracule moment(®?)=(q%) ;1
when 7{r]>0. From Eqgs(11b) and(11¢), we also find

4<R2>—<u2>:2(|\|—1)<2 ri2>7-[r], (14)

|

which implies that the equality

isomorphism?® (u?)=4(R?), occurs only when{r]=0.
Based on Eq(6a) with a=b=1, it has been pointed out

in the literaturé?® that the single-electron mome¢i,;r?) can

80 90 100

<Er?>=<2fi2> +<Er?> , (153
I ! rel : com

2 2
(34 2 (3] o

=(uA)(4R?))

com

Then the ratio of the two contributions is
=(1=1rD/(1+1r]),

(7). /(31

which clarifies that the relative motion contribution is larger
if 7[r]<0, whereas the center-of-mass motion contribution
is if 7[r]>0.

The corresponding expressions (m?>(a by (v2), (P?),
and related quantities, in terms @E;p; ) and 7[ p], are im-
mediately obtained from the above results in position space,
if the names of variables are appropriately replaced with
their momentum-space counterparts. The mathematical struc-
ture remains unaltered, and the same discussion as in posi-
tion space holds in momentum space as well.

IV. NUMERICAL RESULTS

In position space, systematic data of the electron-pair
intracule(u?) and extraculd R%) moments were reported in
Refs. 24-26 at the Hartree—Fock limit level for the 102 at-
oms from He(atomic numbeZ=2) to Lr (Z=103) in their
experimental ground staté§?® Using these data, we have
calculated the angular correlation coefficienfs] based on

in an approximate Eq. (7e). The results are plotted in Fig. 1 as a functionZof

For the first three atoms He, Li, and Be, where asnigyrbitals
are occupiedy{r] is zero, and the electrons are statistically
uncorrelated when measured by the probe function=r.

be precisely decomposed into the contributions from thd=or the remaining 99 atoms, the correlation coefficients are

relative (rel) and center-of-mas&om) motions.

negative with no exceptions. These electrons are negatively
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TABLE I. Comparison of the angular correlation coefficiemfs] in position space.

Calculated from
electron-pair moments

Density- Configuration Hartree—Fock Explicitly
Atom functionaf interactiof? limit© correlated
He —0.040 87 —0.054 14 0 —0.054 242
Li —0.03329 —0.0032 0 —0.004 089
Be —0.06179 —0.0975 0 —0.080 083
B —0.099 30 —0.0816 —0.044 043 —0.070 145
C —0.05350 —0.0688 —0.051 095 —0.065 773
N —0.054 00 —0.0569 —0.050 444 —0.056 535
O —0.05053 —0.0576 —0.046 171 —0.051 658
F —0.046 55 —0.0479 —0.042 321 —0.046 520
Ne —0.04387 —0.0463 —0.039 030 —0.044 461

@Hohenberg—Kohn—Sham method with Bartolotti exchange-correlation functional. Reference 9.
PReference 8 except He.

“Calculated from the Hartree—Fock lin{iti?) and(R?) values in Refs. 24, 25.

dCalculated from the explicitly correlatg@i?) and(R?) values in Refs. 30—35.

Calculated from the data in Ref. 36.

correlated or the anglé;; spanned by two position vectors plies that the relative motion contribution is never smaller
andr; is greater thanr/2 in an average sense. The values ofthan the center-of-mass motion contribution, when the
7r]in Fig. 1 show a periodic behavior reflecting the valencesingle-electron momer(&;r{’) is partitioned.
electronic configuration: Within a period, the values are gen-  In momentum space, the Hartree—Fock limit values of
erally larger when the valenge subshell is occupied. The the second intraculgv?) and extraculg P?) moments were
difference in the Va|encso, Sl, and 32 Configurations is reported in Refs. 24, 25, 37 for the 102 atoms from He to Lr.
clearly observed for the firstZ(=21-30) and secondz( The momentum angular correlation coefficien{p] have
=39-48) transition atoms. The magnitude of the negativé’een calculated based on E@Ob) and are plotted in Fig. 2
correlation decreases in generamcreases_ Thisisdueto as a function ofZ. Again we find that the correlation coeffi-
the fact that the denominator(R?)+(u?) in Eq. (7¢)  cients are zero for the first three atoms, and are negative for
steadily increases with the increasing number of electrothe remaining 99 atoms. Thedependence of{ p] shows a
pairs, while some electron pairs giVezero contribution to ~ simple structure with a single minimum at the Ne atom,
the numerator 4R?)—(u?). The result can also be inter- Where the negative correlation is largestf] = —0.013) in
preted as that the increase in nuclear charge contributes fgomentum space. The result suggests that the momentum-
make electrons more hydrogenic or independent. Within thépace angular correlation coefficient predominantly reflects
Hartree—Fock approximation, the largest negative correlatiofhe statistical correlation of inner electrons. Among inner
is observed for the carbon atom, whefe]=—0.051. electron pairs, the$2p and X2p pairs are considered to be
For the nine atoms He through Ne, the momenté)  the major origin, since the orbital pairs with the same inver-
and(R?2) from explicitly correlated (j;-terms in wave func- sion_symmetry giv€ vanishing contributions to (?)
tions calculations are also available in the literatéfte®®In ~ —(v?). Therefore, the{ p] value decreases until thepZub-
Table |, the angular correlation coefficientsr] from the  shellis fully occupied at the Ne atom, and after that it gradu-
explicitly correlated wave functions are compared with thosedlly increases for the same reason as in position space.
from the Hartree—Fock limit wave functions and with those ~ The momentum-space angular correlation coefficients
from density-function&land configuration interactidi®cal- ~ 7[p] have also been calculated from the explicitly correlated
culations. When we go beyond the Hartree—Fock approximavalues®® of the electron-pair moment®?) and (P?) for
tion, all the atoms, including He—Be, have negative correlathe atoms He through Ne. Table Il summarizes the results
tion coefficients and the so-called electron correlation effecénd compares them with the corresponding Hartree—Fock
works to increase the magnitudes of negative angular corrdimit and configuration interaction values. In the table, the
lations. Within the second period atoms, the magnitudeelectron correlation effect is found to increase tiip] val-
|7{r]| from the explicitly correlated and configuration inter- ues for all the nine atoms. In fact[p] is positive for the
action calculations is largest for the Be atom, and monotonifour atoms He—B. In these atoms, the average arglee-
cally (except the O atom in the configuration interaction re-tween two momentum vectops andp; is less thanr/2, and
sulty decreases toward the Ne atom. However, the densitythe momenta of two electrons tend to be directed to the same
functional calculations predict the greatest negativedirection. Krauseet al!! proposed for the He atom a classi-
correlation for the B atom. The negative angular correlatiorncal picture of bending and antisymmetric stretching motions
of electrons is exceptionally small in the Li atom with a of two electrons for the positive value of p]. However,
singly occupied valences shell. 71 p] changes to a negative value for the atoms C—Ne and the
In all the calculations, the values afr] in position momenta of two electrons tend to be directed to the opposite
space are negative or zero. According to ELf), this im-  directions, as we observed in position space. At present, we
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do not have any answer to the question why the sigfpi V. SUMMARY
fslr\rl'l;cehreii\?eest'llive;ir:);zeé k?lgdlI(;Igf)ogsc;v?sn?hz\;\ﬁnhr?]\i)en"fgn?:vnilt We have shown that the angular correlation coefficient
space. the 'ngl s'on.of electron correlation effects red Ce7-[r] is simply expressed in terms of the generalized electron-

pace, the inclus o N u |fSair moments{q2>(a p) With two real-valued parametews
the magnitude of the statistical correlation of electrons fo ’

¢ C—Ne. Clearlv. th it i lel to th andb. In particular, the relation foa=b=1 means that{r]
atoms .—Ne. learly, the resufts are not parallel 1o toSq,q ¢\ res the difference between the center-of-mass motion
obtained in position space and suggest that the problem

the electron correlations should be studied in both %nd relative motion contributions of electrons by means of
€ electron corretations should be studie OtN SPACES. e second electron-pair moments. Conversely, the electron-
Finally, we note that the magnitudes afr] and [ p]

. . air moment< g2 are obtained from the single-electron
are small and never exceed 0.1 in all the cases examlneﬁ1 $9) (@) 9

. 5 - joment (2;r?) and the correlation coefficient{r]. The
Since Eq.(13) says thakq®),) takes the minimum %b same is also true in momentum space. Numerical results of
=—q[r], a single-electron property{ (N—1)/2](Z;r{)

. . the angular correlation coefficient§r] in position space
=<q2>(1,o) is very close to the minimum value of the gener- 9 ] P P

. . . and in momentum space have been presented and dis-
alized electron-pair momemq2>(1,b) as a function ob. The 7LP] P b

. . . cussed for neutral atoms in their ground states.
same discussion holds for the corresponding momentum-

space propertie&t?) ;) and[(N—1)/2](Z;p?)=(t?)(10)- ACKNOWLEDGMENT
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