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The Uncertainty Principle (HUP), originating from Heisenberg’s seminal paper
in 1927, delves into the intricacies of measurement processes within Quantum
Theory. One well-known illustration of this is the Heisenberg microscope argu-
ment, which attempts to determine the position of an electron using photons.
Initially, gravitational interactions between particles were disregarded due to
the apparent weakness of gravity compared to other fundamental interactions.
However, over time, HUP evolved into a fundamental theorem within the frame-
work of Quantum Mechanics. Despite its foundational status, discussions about
fundamental aspects of nature necessitate considering gravity. This inclusion
has unfolded over decades, from early attempts to generalize HUP to recent
propositions such as those from string theory, deformed special relativity, and
black hole physics. Several revisions of the classical Heisenberg argument have
been proposed. For instance, one version suggests that a beam of photons with
energy E can detect an object of size δx, roughly given by δx ≈ h̄c

2E . This implies
that higher energies allow for the exploration of smaller details. If one accounts
for the formation of micro black holes in high-energy scatterings, with a grav-
itational radius roughly proportional to the scattering energy, the uncertainty
relation needs modification. The modified relation becomes

δx ≈ h̄c

2E
+ βlp

2 2E

πh̄c
(1)

where β is a dimensionless parameter. Although the precise value of β
is not determined by theory, it is generally assumed to be around unity, as
suggested by some models of string theory. An analytic calculation of β has
supported this assumption. However, efforts have been made to experimentally
constrain β. This modification leads to a Generalized Uncertainty Principle
(GUP), expressed as

∆x∆p ≥ h̄

2

[
1 + β

(
∆p

mpc

)2
]

(2)
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in which ∆x and ∆p are uncertainties in position and momentum respec-
tively, and mp is the Planck mass. For mirror-symmetric states, the GUP is
equivalent to the commutator

[x̂, p̂] = ih̄

[
1 + β

(
p̂

mpc

)2
]

(3)

The GUP finds application in various domains such as quantum mechanics,
quantum field theory, thermal effects in QFT, and modifications of quantization
rules.

A Quantum Mechanics view about Deformations

Over the past decade, there has been a vigorous discourse surrounding the
quantifiable attributes posited by different types of Generalized Uncertainty
Principles (GUPs). This debate has primarily revolved around the anticipated
modifications and their experimental implications. Notable among the proposed
experiments are those devised by the Brukner and Marin groups. The explo-
ration of the dimensionless deforming parameter β of GUP can be roughly cat-
egorized into two groups. In the first group, researchers such as Kempf, Mann,
Brau, Vagenas, and Nozari, have translated GUP into a deformed commutator
and subsequently developed a deformed quantum mechanics framework. This
deformed commutator, generally expressed as

[X̂, P̂ ] = ih̄

(
1 + β

P̂ 2

m2c2

)
(4)

where the fundamental variables X̂ and P̂ are envisioned as high-energy
operators applicable at or near the Planck scale. These operators exhibit non-
linear representations, denoted as X̂ = X(x̂) and P̂ = P (p̂), in terms of the
usual position and momentum operators x̂ and p̂ at low energies, obeying the
standard Heisenberg commutator

[x̂, p̂] = ih̄ (5)

This methodology is typically employed to deduce constraints on β originat-
ing from non-gravitational factors by analyzing well-established physical phe-
nomena using the new variables X̂ and P̂ , and comparing the results with exper-
imental data. The explicit calculations hinge upon the specific transformation
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X̂ = X(x̂) and P̂ = P (p̂), which generally involves nonlinear and non-canonical
characteristics, as the commutator [x̂, p̂] does not equal [X̂, P̂ ], indicating that
the corresponding Poisson brackets are not preserved.Researchers compute cor-
rections to quantum mechanical forests, such as energy shifts in the hydrogen
atom spectrum, the Lamb shift, Landau levels, Scanning Tunneling Microscope
observations, charmonium levels, etc. While the bounds on β derived from this
approach are notably stringent, a contentious issue arises regarding the potential
dependence of the anticipated shifts on the specific representation of variables
X and P in the fundamental commutator.

Gravitational bounds on β by the Classical Me-
chanics

Some texts approach that modify classical mechanics by introducing deforma-
tions to standard formulations, often resembling quantum mechanical features.
One such approach involves deforming Newtonian mechanics through adjust-
ments to the Poisson brackets, resembling quantum commutators. This modifi-
cation is represented by the relation

[x̂, p̂] = ih̄( +β0p̂
2) (6)

which transforms to

{X,P} = (1 + β0P
2) (7)

The parameter β0 is defined as

β/(m2
pc

2) (8)

Researcher utilize this deformed mechanics to compute the precession of
Mercury’s perihelion, interpreting it as an additional effect to the precession
predicted by General Relativity (GR). Comparing this result with observations
yields a very precise agreement, leading to an extremely tight constraint of
β < 10−66. However, a critique of this approach arises from its linear superpo-
sition with GR, neglecting potential modifications to GR at order β. This omis-
sion raises questions about the coexistence of GR and GUP-modified Newtonian
mechanics and how their respective precession errors combine. Furthermore, as
β approaches 0, the model only recovers Newtonian mechanics, necessitating
the addition of GR corrections as an independent structure. Consequently, the
physical validity of this approach and the resulting bound on β remain dubious.
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Another approach introduces a covariant formalism to deform classical Poisson
brackets, leading to a β-deformed geodesic equation and violation of the Equiv-
alence Principle. Interestingly, this violation solely stems from the deformed
Poisson brackets and not from general covariance or modifications to GR equa-
tions or solutions. For instance, deforming Poisson brackets akin to quantum
commutators results in modified equations of motion for a particle in a Newto-
nian potential. This modification leads to violations of the Equivalence Princi-
ple, showcasing that even within simple Newtonian mechanics, deviations arise
from the altered brackets. Despite this, the Ghosh formalism retains covariance
as β approaches 0, restoring standard GR predictions in this limit. Thus, it was
predicted a bound on β of β < 1021 from the violation of the universality of free
fall, indicative of a (weak) equivalence principle violation. Tkachuk explores the
equivalence principle within deformed classical mechanics by considering com-
posite bodies. It has been proposed that kinetic energy remains independent of
the body’s composition but relies solely on its total mass, introducing deforma-
tion parameters, β0i for each constituent particle. This construction allows for
the recovery of the equivalence principle within deformed classical mechanics,
albeit with each particle possessing its unique minimal length. This feature con-
flicts with the universality of gravitation, as it implies different minimal lengths
for different particles, contrary to the universally constant Planck length.

Calculation of Deformation Parameter

One of the aims is computing an exact value of β by employing methods. It
starts by introducing a generic deformation of the spherically symmetric metric,
expressed as

F (r) = 1− 2GM

rc2
+ εϕ(r) (9)

rH = a− εaϕ(a)

1 + ε[ϕ(a) + aϕ′(a)]
(10)

with a denoting 2GM/c2. Subsequently, the deformed standard Hawking
temperature, denoted as T , is calculated, incorporating the deformed metric
function F (r), yielding a comprehensive expression accounting for quantum cor-
rections. From the respective first-order terms of these expansions, the exact
value of β is extracted, expressed as

β =
4π

2m2
p

[2ϵ(a) + aϵ′(a)] (11)

4



This extraction method is demonstrated through the consideration of lead-
ing quantum corrections to the Newtonian potential, investigated by Duff and
Donoghue. Donoghue’s approach reformulates General Relativity as an effec-
tive field theory, highlighting that at ordinary energies, gravity behaves akin
to a well-behaved Quantum Field Theory (QFT). Quantum corrections at low
energy, coupled with dominant effects at large distances, are attributed to the
propagation of massless particles (gravitons). This leads to the derivation of an
effective quantum-corrected gravitational potential, which encompasses both
classical and quantum effects. Further, it can be discussed the definition of an
effective Newtonian potential for a given metric, as well as the reverse process
of mimicking a prescribed Newtonian potential with a corresponding metric.
Utilizing these concepts, the metric imitating the quantum-corrected Newto-
nian potential is established. By identifying the correction term ϵ(r) within
this context eventually leads to the determination of β. Notably, β is found
to be approximately of order 1, corroborating similar findings from alternative
methodologies.
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