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Critical dynamics in the early universe 

B LHu 
Department of Physics, University of Malyland, College Park, MU 7.0742, USA 

Abslraei Methods and concepts for the study of p h a r  lransitions mediated by a 
timedependent order-parameter field in mulved spacetimes are discwed. A practical 
example is the derivation of an effective (quasi-)polenlial for the description of ‘slow- 
roll’ Mation in the early universe. We frrst summarize our early results on viewing 
the symmetry behavior of mnstant background fields in c u d  but Static spacetimes as 
Bnite size and the use of derivative apansions for mnsuucting effeclive actions 
for slowly-vatying background fields We then introduce the notion of dynamical finite 
sue effect lo explain how an exponential expansion of the scale faclor impans a finite 
size lo the system and how the symmelty behavior in de Sitter space can be undentood 
qualitatively in this light. We reason why the exponential inflation can be described 
equivalently by a scale transformation, thus rendering this special class of dynamim as 
effectively static. Finally we show how, in this view, one can Mat  the class of ‘slow-roll’ 
inflation as a dynamic perturbation off the effectively slalic class of exponential inflation 
and understand it BS a dynamical critical phenomenon in msmology. 

1. Effective action for dynamic order-parameter fields 

In this talk I would like to report on some new thoughts on the question of how 
to construct an effective action for a slowly-varying order-parameter field for the 
description of a class of inflationary msmologies [l] where the transition to the 
true vacuum takes place via a gradually changing potential, such as the ‘slow-roll’ 
type in new inflation 121. Knowledge of the exact form of the effective action 
holds the key to a complete description of a phase transition. One can deduce 
not only the qualitative features (first or second order) but also the quantitative 
details (mechanisms and processes). There has been recent interest in understanding 
the nature and construction of the effective potentials for scalar fields in different 
cosmological spacetimes. The interest is both theoretical, when viewed as a problem 
of tinding the infrared behavior of quantum fields in curved spacetimes, and practical, 
when it is applied to descriptions of phase transitions in the very early universe (from 
the Planck time to the GUT time), or even the late universe (e.g., for electroweak 
phase transitions). 

The work I am reporting to you now is a continuation of the program of study 
I began almost ten years ago with O’Connor and Shen on the symmetry behavior 
of quantum fields in curved spacetime. The first stage of our work centered on the 
simpler category of static spacetimes and constant order-parameter fields. We found 
that both geometrical and topological factors influence the infrared behaviour (IR) 
and often can be thought of as finite size effects. For a review of this first stage 
of our work see [3,4,5]. The implication of finite size effect on cosmological phase 
transitions have been discussed for the de Sitter and mixmaster universes in [6,7]. 
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Most theoretical studies of inflation are based on the effective potential of the 
inflaton field in the de Sitter universe. It is not diflicult to carry out such a 
calculation, as the mode functions are hown explicitly [8]. However, one needs 
to be careful in correctly incorporating the intluence of the zero mode and the higher 
modes of the spectrum on the critical behavior We used the 2-particle irreducible 
(2PI) formalism [9], which involves the consistent solution of an equation for the 
background field and one for the two-point function[4]. This helped to decipher the 
infrared behavior near the critical point (for a massless, minimally coupled field in a 
symmetric vacuum). We actually carried out such a program for a general class of 
product spaces, including cosmological spacetimes as well as the Kaluza-Klein and 
the imaginary-time dnite temperature field theories. These techniques and results 
should be useful for tackling a wide range of problems not nemsarrily related to 
cuwed spacetime. A problem of current interest is to work out the line structure of 
the finite temperature effective potential for Higgs fields near the symmetric vacuum 
in the electroweak phase transition in connection with, eg., late-time baryogenesis 
processes. 

Although we can get a reasonable intuitive description of the physics in the above 
situations, quantatative statements are still unreliable because of the persistance of IR 
problems (even if the 2PI effective action is used). The essential reason for this is that 
the microscopic renormalized parameters are no longer adequate for a description of 
the IR physics. For example, in the finite temperature case a perturbative analysis 
in terms of the 4 - d parameters is well !mown to be plagued with IR problems. 
These IR problems lead to a breakdown of perturbation theory in terms of the 4 - d 
parameters and are symptomatic of the fact that one is trying to describe essentially 
3-d physics in terms of 4-d physics. In other words, the effective degrees of freedom 
in the problem are changing as a function of scale. Since 1990 Denjoe O'Connor and 
Chris Stephens have developed a quantative formalism wherein these IR problems 
are controlled. They have applied their techniques to a broad range of problems in 
different areas of physics with new lindings on dimensional reduction and cross-over 
behaviors. The essence of their work is the development of a renormalization group 
(RG) that can interpolate between qualitatively different degrees of freedom[lO, 111. 
For the finite temperature case their RG is explicitly temperature (T) dependent, 
and acts in such a way that for T near zero it effectively integrates out 4 - d degrees 
of freedom. Such an RG follows as closely as possible the action of the dilation 
generator of true scale changes. (See their contributions in this volume for a recent 
summary.) 

The second stage of our work on phase transitions in the early universe with 
time-varying background fields began in 1987 with Sukanya Sinha and Yuhong Zhang. 
We concentrated on situations where the order parameter field changes either with 
space or time. A familiar example in condensed matter physics is anisotropic 
superconductivity where one can use a gradient expansion in the landau-Ginzberg- 
Wilson effective potential to account for the differences coming from the next-to- 
nearest neighbor interactions. For cosmological problem, it is the timedependence 
of the background field which one needs to deal with. Strictly speaking, phase 
transition studies usually carried out assuming a constant field in the de Sitter universe 
is unrealistic, in that it only addresses the situation after the universe has entered 
the inflationary stage and inflates indefinitely. This model cannot be used to answer 
questions raised concerning the likelihood that the universe will still inflate if it 
had started from a more general, less symmetric initial state, such as the mixmaster 
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universe [12,13,14]. Nor can one use this model to study the actual process of 
phase transition (e.g., slow roll-over), and the problem of exit (graceful or not) to 
the 'true' Friedmann phase. 'lb do this, as is well-known, one usually assumes that 
the potential is not exactly flat, but has a downward slope which enables the inflaton 
field to gradually (so as to give sufiicient inflation) settle into a global ground state. 
The cosmological solution is, of course, no longer a de Sitter universe. Thus for a 
realistic description of many inflationary transitions one needs to treat the case of a 
nonflat potential and a time-varying field. The form of the potential and the metric of 
the background spacetime determine the behavior of the scalar field in the Laplace 
Beltrami equation, but the field in turn provides the source of the Einstein equation 
which determines the behavior of the background spacetime metric. Hence they 
ought to be solved self-consistently. (One usually considers only the homogeneous 
mode of the scalar field for the dynamics of inflation and the inhomogeneous modes 
of quantum fluctuations for structure formation.) At the classical level, the wave 
equation for the background scalar field (assumed homogeneous) with self-interaction 
potential V(4) in a spatially-flat Robertson-Walker (RW) spacetime is given by 

$ + 3 H ( t ) & + V ' ( 4 ) = 0  H + 3 H Z = 8 r r G V ( + )  a= -47rGd' (1) 
where H ( t )  = u / a  is the Hubble rate, a dot denotes derivative with respect to 
cosmic time t, and a prime denotes a derivative taken with respect to its argument. 
A trivial but important solution to these equations is obtained by assuming that 
V(4) = V, =constant, 4 = 4" =constant and H = Ho =constant, which is the 
de Sitter universe a = eHO* with a constant field. A less trivial but useful solution 
is the so-called 'power-law' inflation models [15], with an exponential potential and 
a slowly-varying inflaton field (see equations (3, 4)  below). One can take this as 
an example of a 'slow-roll' transition. The methods we have devised can be used 
to derive the effective potential (strictly speaking, quasi-potential) of such classes 
of spacetimes and fields. L.et me describe in the following sections the theoretical 
dilficulties and ways to Overcome them. Records of the second stage of our research 
can be found in [E, 17, IS]. t 
t Before closing this introduction, let me make a mmment on the meaning of the term 'critical dynamid 
as used in the mntext of msmological phase transitions. !3y it we refer to studies of phase transitions 
mediated by a timedependent order parameter field in mntrast lo static critical phenomena where the 
order-parameter field is mnstant in time. We are using this term in a general sense, not necessarily 
referring to the specific mnditions of critical phenomena as discussed in mndensed matter aystems [19]. 
For example, critical phenomena usually deals with the change of the order parameter 6eld near the 
critical point as a function of temperature. In cosmology, temperature T is a parameter usually (cg. 
under the assumption of adiabatic expansion) tied in with the sale  factor a and does not play the Same 
role as m aitical phenomena. In the new inflationq scenario, the aitical temperature T, is defined as 
the temperature at which a global gmund slate (the w e  vacuum) fint appears. The stage when vacuum 
energy begins to dominate and inflation starts is the mmmencement of phase transition. The stage when 
the system begins lo enter the m e  vacuum and reheat can be regarded for practical purpose as the end of 
phase transition. Throughout the process of inflation the system is in a 'critical' slate. The progression of 
a msmological phase transition is measured not by temperatun, but ty the change of field mn6 urations 

or m$, = d2V/d$*l,=,j - 0 which may or may not be possible). In a i t i d  dynamics studies of 
mndensed matter s,%tems one usually analyses the timedependent Landau-Ginzberg equation, with a 
noise term representing the &ect of a thermal bath and studies how the system (order-parameter 6eld) 
settles into equilibrium as it approaches the critical point. We are not mncented with the mrresponding 
cosmological problem here. An attempt to describe this aspect of inflationary transition was made in [ZO]. 
See also pl]. 

in time. Oiticalily mrresponds to the physical mndition that the mrrelation length 6 = mJf ! + m, 
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2. Quasistatic appmximation versus dynamical fmite size effect 

The effective potential V(+) gives a well defined description of phase transition 
only for a constant background (order-parameter) field. If the order-parameter field 
is dynamic, the effective potential is illdefined and a host of problems will arise. 
Indeed, the very meaning of phase transition can become questionable. This is 
because as the field changes the effective action functional changes, and the locations 
of the minima change also. The notion of symmey breaking and restoration is 
meaningful only when there exist well-defined global and local minima which does 
not change much in the time scale of the phase transition. Changing background field 
will also engender particle creation, which affects the nature and energetics of phase 
transition as well. Therefore, in the context of phase transitions involving dynamic 
fields, short of creating a new framework, one can at best discuss the problem in a 
perturbative sense, where the background field is nearly constant (quasi-static), so that 
an effective quasi-potential can still be defined 122,171. An effective Lagrangian for a 
slowly-varying background field can be obtained by carrying out a quasilocal expansion 
in derivative orders of the field, the leading term being the effective potential [U]. 

One can use this method to derive effective quasi-potentials for scalar fields in flat 
space (For an example of its application to electroweak finite temperature transition 
see the recent paper by Moss et a1 [24]), or (in conformal time) for the conformally- 
flat Robertson-Walker spacetimes. This is useful for studying mmological phase 
transitions where the background spacetime changes only gradually, as in the 
Friedmann (low-power law) solutions Q = P , p  < 1. (For a description see 
[17].) However, for the inflationary universe where the scale factor undergoes rapid 
expansion following either an exponential a = e*$ or a high power-law behavior, the 
quasilocal expansion which assumes that the background field varies slowly is usually 
inadequate. That was the quandary we were in until the idea of using scaling to 
describe inflation dawned upon us. Viewed in this new light the de Sitter exponential 
expansion can be regarded as effectively static. 

The fist lead to such a connection came from our earlier investigation into the 
infrared behavior of quantum fields in de Sitter universe. If one follows the main 
results we obtained for static spacetimes and view the de Sitter space in the S4 
coordinatization, one can easily come up with a fairly good qualitative depiction. 
In our earlier Work we introduced the concept of an effective infrared dimension 
(EIRD) [4]. This concept has been generalized and given a quantitative meaning in 
the work of OConnor and Stephens [25l where they define an effective dimension 
( d e j f )  which for de Sitter space is a function of q < / a  (see footnote 1 for the 
definition of E )  and varies between 4 and a number close to zero. The reason it 
cannot go to zero is because there is a maximum value for the correlation length in 
de Sitter space and the RG must stop running at this value. This in fact is a generic 
feature of the RG for totally finite systems. However, if one views de Sitter space in 
other coordinatizations, such as the S3 x R1 or the R3 x R' cases, one would have 
quite a different description of the physics where the obvious connection with a finite 
geometry is lost We know that physics should be the same despite differences in 
coordinate descriptions. The resolution of this puzzle brings in an interesting point 
on the effect of spacetime dynamics on the symmey behavior of a quantum field. 
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Specifically, for the special case of exponential expansion, in the spectrum of the 
4dim (spacetime) wave operator, there is a gap which separates the zero mode from 
the rest. This is what gives the de,, N 0 for the deep IR behavior of the scalar field 
in these other coordinate descriptions. Physically this arises from the fact that at late 
times, as a result of exponential expansion, most of the high-lying modes are stacked- 
up against the zero mode by the rapid red-shifting. (The S3 or R3 spatial sector also 
becomes inmaterial.) The appearance of a scale (the event horizon ff-*) is a unique 
feature of this exponential class of expansion. It gives rise to effects identical to that 
originating from some finite size in some associated static spacetimes. This is why we 
refer to these effects as ‘dynamical h i t e  size effects’ [16,5J. 

3. Inflation as scaling: static critical phenomena 

The other lead came from the work I did with Yuhong Zhang in 1990 1181 on coarse- 
graining and backreaction in stochastic inflation. There, in trying to compare the 
inflationary universe with phase transitions in the Landau-Ginzberg model, using a 

field as example, we realize that the exponential expansion of the scale factor 
can be viewed as the system undergoing a Kadanoff-Migdal scale transformation [Zq. 
This can be seen as follows: Consider a spatially-flat RW metric with a constant scale 
factor. This is just the Minkowski spacetime. Let us consider an ordered sequence 
of such static hyperspaces (foliation) with scales au,a, ,a, ,  etc parameterized by 
t, = tu + n A t ,  n = 0,1,2,. . . . These spacetimes have the Same geometry and 
topology but M e r  only in the physical scale in space. One can always redefine 
the physical scale length z:,, = a,z to render them equivalent. If each copy has 
scale length magnified by a &xed factor s over the previous one in the sequence, ie. 
a,+ , /a ,  s s = eHA‘, we get exactly the physical picture as in an eternal inflation. 
Here s is independent of time. After n-iterations ie. a, /au = en(HAr), or, with 
a continuous parameter a ( t )  = aoeHt.  It is important to recognize that t can be 
any real parameter not necessarily related to time. In other words, time in this case 
plays the mle of a scaling parameter. It does not have to be viewed as a dynamical 
parameter. Thus for this special class of expansion, the dynamics of spacetime can 
be replaced equivalently by a scaling transformation. In so doing one renders eternal 
inflation into a static setting. By contrast, the larger class of power-law expansion 
a = t7 does not possess this scaling property. We see that a n / a o  = (1 + n A t / t ) r  
depends on time.’ Hence they cannot be viewed as effectively static. A useful 
parameter which marks the difference between these two classes of dynamics is 
C = I&I/H* = & / t u z ,  where a Ina,  which can be regarded as a ‘nonadiabaticity 
parameter’ of dynamics: the de Sitter exponential behavior with 5 = 0 is ’static’, the 
slow-roll with smaU C << 1 is ‘adiabatic’, while the RW low-power-law with C FJ 1 
is ‘nonadiabatic’. This rather unusual characteratization is nevertheless quite useful. 
It captures the essence of our considerations above in distinguishing between static 
vs dynamical finite size effect and static vs dynamic scaling [19]. As distinct from the 
rather unique de Sitter case, where only one parameter, the scaling parameter s, is 
needed for the description of the dynamics of spacetime and the field, in the general 
class of RW dynamics, two parameters are required : the scaling prameter s which 
describes inflation, and a dynamic parameter t which describes the evolution of the 
field different from the ‘static’ (eternal inflation) case. These two parameters appear 



S98 B L H u  

also in the dynamical renormalization group theory description of dynamical critical 
phenomena. 

4. 'Slow-roll' as dynamical critical phenomena 

Using the conceptual framework introduced above, one can understand why the 
particular subclass of high-power-law expansion associated with an exponential 
potential can hence be viewed as quasi-static, as it differs only slightly from the 
exponential expansion in their qualitative behavior. It is in this context that one can 
once again introduce the quasilocal approximation to derive the effective action for 
scalar fields to depict this more realistic 'slow-roll' inflation, now carried out as a 
quasilocal perturbation from the de Sitter space, which is viewed as effectively static. 

A classical solution to (2) is given by [IS]: 

a ( t )  = au(l t HuAt/y)Y (3) 

Here 1, = l/m is the Planck length, V, = [(3y - l ) / y ] ( H ~ / 8 ? c G ) , y  = 2 / c 2  
and At = t - t,. The subscript 0 denotes the value at an initial time tu where 
the de Sitter solution holds. Note also that for y -+ CO or e 3 0, we get the 
class of de Sitter solution a ( t )  = uUeHo('-'o). In that limit, the scaling parameter 
s = [ a ( t  + t , ) / a ( t ) ]  = (1 + a / y ) Y  goes over to em, where o = HAt . 

The timedependence of the scalar field 4 associated with the above solutions of 
V and a is given by 1151 

+(t) = t W l +  H A t / y )  (4) 

Now, following the rationale we suggested above, we can view this solution as a 
'quasi-static' generalization of the de Sitter solution. Expanding +( t )  for small time 
difference from tu, we get, 

Here we can identify the coefficients of the first two terms ( A f ) " , n  = 1,2 as the 
leading coefficients in a quasi-local expansion of of the effective mass which involves 
the background field [U]. After such an identification, it is easy to adopt the well- 
established derivative expansion scheme for the calculation of the quantum effective 
quasi-potential. The general result is given in [17]. There, as we recall, the effective 
Lagrangian contains the 'kinetic energy' terms as well as the radiative corrections 
arising from the varying background field. Details of the derivation and discussions 
on the physical meaning of these results in 'slow roll-over' inflations are given in [27. 
(Kay Pirk has recently derived a quantum solution to (3) [ZS].)  
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5. Summary 

Let me summarize the main points brought up in this talk by the following schematic 
diagram: 

Constant field in static or 
conformally static spacetimes - ‘Eternal inflation’ 
(Fiiite size effect) 

SCALING Exponential expansion a = eH* 

(Dynamical iinite size effect) 

@asilocal approximation Derivative expansion 

Slowly varying field in 
RW universe (Low power-law) ---t ‘Slow roll-over’ 

High power-law expansion a = t P  

For slowly-varying background fields one can use the method of derivative 
expansion to derive the quasilocal effective Lagrangian. Usually this makes sense 
only for static (or conformally-static, like the RW) spacetimes. However, one can 
view the special class of exponential expansion as effectively ‘static’. This can be 
understood with the ideas of ‘dynamical finite size effect’ and implemented by treating 
inflation as ‘scaling’ transformations. The ‘slow roll-over’ type of phase transition used 
in many inflationary models can be viewed as a quasi-static case, and derived as a 
dynamic perturbation from the de Sitter universe. An example which this reasoning 
can be applied to for the calculation of the effective ‘quasi-potential’ is the case of a 
high-power-law expansion with an exponential potential for the inflaton field. 
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