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Critical dynamics in the early universe

BLHu
Department of Physics, University of Maryland, College Park, MD 20742, USA

Abstract. Methods and concepts for the study of phase tramsitions mediated by a
time-dependent order-parameter field in curved spacetimes are discussed. A practical
example is the derivation of an effective (quasi-)potential for the description of ‘slow-
rolt' inflation in the early universe. We first summarize our early results or viewing
the symmetry behavior of constant background fields in curved but static spacetimes as
finite size effect, and the use of derivative expansions for constructing effective actions
for slowly-varying background fields. We then introduce the notion of dynamical finite
size effect (0 explain how an exponential expansion of the scale factor imparts a finite
size 1o the system and how the symmelry behavior in de Sitter space can be understood
qualitatively in this light. We reason why the exponential inflation can be described
equivalently by a scale transformation, thus rendering this special class of dynamics as
effectively static. Finally we show how, in this view, one can treat the class of ‘slow-roll’
inflation as a dynamic perturbation off the effectively stalic class of exponential inflation
and understand it as a dynamical critical phenomenon in cosmology.

1. Effective action for dynamic order-parameter fields

In this talk I would like to report on some new thoughts on the question of how
to construct an effective action for a slowly-varying order-parameter field for the
description of a class of inflationary cosmologies [1] where the tranmsition to the
true vacuum takes place via a gradually changing potential, such as the ‘slow-roll’
type in new inflation [2). Knowledge of the exact form of the effective action
holds the key to a complete description of a phase transition. One can deduce
not only the qualitative features (first or second order) but also the quantitative
details (mechanisms and processes). There has been recent interest in understanding
the nature and construction of the effective potentials for scalar fields in different
cosmological spacetimes. The interest is both theoretical, when viewed as a problem
of finding the infrared behavior of quantum fi¢lds in curved spacetimes, and practical,
when it is applied to descriptions of phase transitions in the very early universe (from
the Planck time to the GUT time), or even the late universe (e.g., for electroweak
phase transitions).

The work I am reporting to you now is a continuation of the program of study
I began almost ten years ago with O’Connor and Shen on the symmetry behavior
of quantum fields in curved spacetime. The first stage of our work centered on the
simpler category of static spacetimes and constant order-parameter fields. We found
that both geometrical and topological factors influence the infrared behaviour (IR)
and often can be thought of as finite size effects. For a review of this first stage
of our work, see [3,4,5]. The implication of finite size effect on cosmological phase
transitions have been discussed for the de Sitter and mixmaster universes in [6, 7).
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Most theoretical studies of inflation are based on the effective potential of the
inflaton field in the de Sitter universe. It is not difficult to carry out such a
calculation, 2s the mode functions are knmown explicitly [8]. However, one neceds
to be careful in cotrectly incorporating the influence of the zero mode and the higher
modes of the spectrum on the critical behavior We used the 2-particle irreducible
(2PI) formalism [9], which involves the comsistent solution of an equation for the
background field and one for the two-point function[4]. This helped to decipher the
infrared behavior near the critical point (for a massless, minimally coupled field in a
symmetric vacuum). We actually carried out such a program for a general class of
product spaces, including cosmological spacetimes as well as the Kaluza-Klein and
the imaginary-time finite temperature field theories. These techniques and results
should be useful for tackling a wide range of problems not necessarrily related to
curved spacetime. A problem of current interest is to work out the fine structure of
the finite temperature effective potential for Higgs fields near the symmetric vacuum
in the electroweak phase transition in connection with, e.g., late-time baryogencsis
processes.

Although we can get a reasonable intuitive description of the physics in the above
situations, quantatative statements are still unreliable because of the persistance of IR
probilems (even if the 2P1 effective action is used). The essential reason for this is that
the microscopic rencrmalized parameters are no longer adequate for a description of
the IR physics, For example, in the finite temperature case a perturbative analysis
in terms of the 4 — d parameters is well known to be plagued with IR probiems.
These IR problems lead to a breakdown of perturbation theory in terms of the 4 —d
parameters and are symptomatic of the fact that one is trying to describe essentially
3—d physics in terms of 4—d physics. In other words, the effective degrees of freedom
in the problem are changing as a function of scale. Since 1990 Denjoe O’Connor and
Chris Stephens have developed a quantative formalism wherein these IR problems
are controlled. They have applied their techniques to a broad range of problems in
different areas of physics with new findings on dimensional reduction and cross-over
behaviors. The essence of their work is the development of a renormalization group
(RG) that can interpolate between qualitatively different degrees of freedom[10, 11].
For the finite temperature case their RG is explicitly temperature {7") dependent,
and acts in such a way that for T rear zero it effectively integrates out 4 — 4 degrees
of freedom. Such an RG follows as closely as possible the action of the dilation
generator of true scale changes. (See their contributions in this volume for a recent
summary.)

The second stage of our work on phase transitions in the early universe with
time-varying background fields began in 1987 with Sukanya Sinha and Yuhong Zhang.
We concentrated on situations where the order parameter field changes either with
space or time. A familiar example in condensed matter physics is anisotropic
superconductivity where one can use a gradient expansion in the Landau-Ginzberg-
Wilson effective potential to account for the differences coming from the next-to-
nearest neighbor interactions. For cosmological problems, it is the time-dependence
of the background field which one needs to deal with. Strictly speaking, phase
transition studies usually carried out assuming a constant field in the de Sitter universe
is unrealistic, in that it only addresses the situation after the universe has entered
the inflationary stage and infiates indefinitely. This model cannot be used to answer
questions raised concerning the likelihood that the universe will still inflate if it
had started from a more general, less symmetric initial state, such as the mixmaster
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universe [12,13,14]. Nor can one use this model to study the actual process of
phase transition (e.g., slow roll-over), and the problem of exit (graceful or not) to
the ‘true’ Friedmann phase. o do this, as is well-known, one usually assumes that
the potential is not exactly flat, but has a downward slope which enabies the inflaton
field to gradually (so as to give sufficient inflation) settle into a global ground state.
The cosmological solution is, of course, no longer a de Sitter universe. Thus for a
realistic description of many inflationary transitions one needs to treat the case of a
nonflat potential and a time-varying field. The form of the potential and the metric of
the background spacetime determine the behavior of the scalar field in the Laplace—
Beltrami equation, but the field in turn provides the source of the Einstein equation
which determines the behavior of the background spacetime metric. Hence they
ought to be solved self-consistently. (One usuvally considers only the homogeneous
mode of the scalar field for the dynamics of inflation and the inhomogeneous modes
of quantum fluctuations for structure formation.) At the classical level, the wave
equation for the background scalar field (assumed homogeneous) with self-interaction
potential V'(¢) in a spatially-flat Robertson—Walker (RW) spacetime is given by

S43H(DG+VI($) =0 H+3H=8xGV($) H=-4G& (1)

where H(t) = a/e is the Hubble rate, a dot denotes derivative with respect to
cosmic time ¢, and a prime denotes a derivative taken with respect to its argument.
A trivial but important solution to these equations is obtained by assuming that
V(¢) = ¥, =constant, ¢ = ¢, =constant and H = H; =constant, which is the
de Sitter universe a = e with a constant field. A less trivial but usefui solution
is the so-called ‘power-law’ inflation models [15], with an exponential potential and
a slowly-varying inflaton field (see equations (3, 4) below). One can take this as
an example of a ‘slow-roil’ transition. The methods we have devised can be used
to derive the effective potential (strictly speaking, quasi-potential) of such classes
of spacetimes and fields. Let me describe in the following sections the theoretical
difficulties and ways to overcome them. Records of the second stagé of our research
can be found in [16, 17, 18], §

t Before closing this introduction, let me make a comment on the meaning of the term ‘critical dynamics’
as used in the context of cosmological phase transitions. By it we refer to studies of phase transitions
mediated by a time-dependent order parameter field in contrast to static critical phenomena where the
order-parameter field is constant in time. We are using this term in a general sense, not necessarily
referring to the specific conditions of eritical phenomena as discussed in condensed matter systems [19].
For example, critical phenomena usually deals with the change of the order parameter ficld near the
critical point as a function of temperature. In cosmology, temperature T is a parameter usually (e.g.
under the assumption of adiabatic expansion) tied in with the scale factor ¢ and does not play the same
role as in critical phenomena. In the new inflationary scenario, the critical temperature T¢ is defined as
the emperature at which a global ground state (the true vacuum) first appears. The stage when vacuum
energy begins to dominate and infiation starts is the commencement of phase transition. The stage when
the system begins to enter the true vacuum and reheat can be regarded for practical purpose as the end of
phase transition. Throughout the process of inflation the system is in a ‘critical’ state. The progression of
2 cosmological phase transition is measured not by temperature, but by the change of field conﬁ§urations

in time. Criticality corresponds to the physical condition that the correlation length { = m_;, — oo,
or ml, = d*V/dg?|4q — O which may or may not be possible). In critical dynamics studies of
condensed matter systems one usually analyses the time-dependent Landau-Ginzberg equation, with a
noise term representing the effect of 2 thermal bath and studies how the system (order-parameter ficld)
settles into equilibrium as it approaches the critical point, We are not concerned with the corresponding
cosmological problem here. An attempt to describe this aspect of inflationary transition was made in [20].
See also [21].
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2. Quasistatic approximation versus dynamical Finite size effect

The effective potential V'(¢) gives a well defined description of phase transition
only for a constant background (order-parameter) field. If the order-parameter field
is dynamic, the effective potential is ill-defined and a host of problems will arise.
Indeed, the very meaning of phase transition can become questionable. This is
because as the field changes the effective action functional changes, and the locations
of the minima change also. The notion of symmetry breaking and restoration is
meaningful only when there exist well-defined global and local minima which does
not change much in the time scale of the phase transition. Changing background field
will also engender particle creation, which affects the nature and energetics of phase
transition as well. Therefore, in the context of phase transitions involving dynamic
fields, short of creating a new framework, one can at best discuss the problem in a
perturbative sense, where the background field is nearly constant (quasi-static), so that
an effective quasi-potential can still be defined {22,17]. An effective Lagrangian for a
slowly-varying background field can be obtained by carrying out a quasilocal expansion
in derivative orders of the field, the leading term being the effective potential [23].

L= L($,8,6,8,8,6,...) @)

One can use this method to derive effective quasi-potentials for scalar ficlds in flat
space (For an example of its application to electroweak finite temperature transition
see the recent paper by Moss et al [24]), or (in conformal time) for the conformaliy-
flat Robertson—Walker spacetimes. This is useful for studying cosmological phase
transitions where the background spacetime changes only gradually, as in the
Friedmann (low-power law) solutions ¢ = t*,p < 1 (For a description see
[17].) However, for the inflationary universe where the scale factor undergoes rapid
expansion following either an exponential a = e* or a high power-law behavior, the
quasiloca] expansion which assumes that the background field varies slowly is usually
inadequate. That was the quandary we were in until the idea of using scaling to
describe inflation dawned upon us. Viewed in this new light the de Sitter exponential
expansion can be regarded as effectively static.

The first lead to such a connection came from our earlier investigation into the
infrared behavior of quantum fields in de Sitter universe. If one follows the main
fesults we obtained for static spacetimes and view the de Sitter space in the 5*
coordinatization, one can easily come up with a fairly good qualitative depiction.
In our earlier work we introduced the concept of an effective infrared dimension
(EIRD) [4]. This concept has been generalized and given a quantitative meaning in
the work of O’Connor and Stephens [25] where they define an effective dimension
(d,;;) which for de Sitter space is a function of 7= £/a (see footnote 1 for the
definition of £} and varies between 4 and a number close to zero. The reason it
cannot go to zero is because there is a maximum value for the correlation length in
de Sitter space and the RG must stop running at this value. This in fact is a generic
feature of the RG for totally finite systems. However, if one views de Sitter space in
other coordinatizations, such as the S3 x R! or the R? x R! cases, one would have
quite a different description of the physics where the obvious connection with 2 finite
geometry is lost. We know that physics should be the same despite differences in
coordinate descriptions. The resclution of this puzzie brings in an interesting point
on the effect of spacetime dynamics on the symmetry behavior of a quantum field.
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Specifically, for the special case of exponential expansion, in the spectrum of the
4-dim (spacetime) wave operator, there is a gap which separates the zero mode from
the rest. This is what gives the d,;, ~ 0 for the deep IR behavior of the scalar field
in these other coordinate descriptions. Physically this arises from the fact that at late
times, as a result of exponential expansion, most of the high-lying modes are stacked-
up against the zero mode by the rapid red-shifting. (The S* or R? spatial sector also
becomes inmaterial.) The appearance of a scale (the event horizon H~!) is a unique
feature of this exponential class of expansion. It gives rise to effects identical to that
originating from some finite size in some associated static spacetimes. This is why we
refer to these effects as ‘dynamical finite size effects’ [16, 5.

3. Inflation as scaling: static critical phenomena

The other lead came from the work I did with Yuhong Zhang in 1950 [18] on coarse-
graining and backreaction in stochastic inflation. There, in trying to compare the
inflationary universe with phase transitions in the Landau-Ginzberg model, using a
Mg field as example, we realize that the exponential expansion of the scale factor
can be viewed as the system undergoing a Kadanoff-Migdal scale transformation [26].
This can be seen as follows: Consider a spatially-flat RW metric with a constant scale
factor. This is just the Minkowski spacetime. Let us consider an ordered sequence
of such static hyperspaces (foliation) with scales ay,a;,a,, etc parameterized by
t, = tg+ nA&t,n =0,1,2,... . These spacetimes have the same geometry and
topology but differ only in the physical scale in space. One can ajways redefine
the physical scale length z{,, = e,z to render them equivalent. If each copy has
scale length magnified by a fixed factor s over the previous one in the sequence, ie.
anp1/a, = s = e 2 we get exactly the physical picture as in an eternal inflation.
Here s is independent of time. After n-iterations ie. a, /o, = e*F4%), or, with
a continuous parameter a(t) = aye?. It is important to recognize that ¢ can be
any real parameter not necessarily related to time. In other words, time in this case
plays the role of a scaling parameter. It does not have to be viewed as a dynamical
parameter. Thus for this special class of expansion, the dynamics of spacetime can
be replaced equivalently by a scaling transformation. In so doing one renders eternal
inflation into a static setting. By contrast, the larger class of power-law expansion
a = 7 does not possess this scaling property. We see that a,, fay, = (1 4+ nAt/t)?
depends on time.' Hence they cannot be viewed as effectively static. A useful
parameter which marks the difference between these two classes of dynamics is
¢ = |H|/H? = &/&?, where o = Ina, which can be regarded as a ‘nonadiabaticity
parameter’ of dynamics: the de Sitter exponential behavior with ¢ = 0 is ‘static’, the
slow-roll with small { << 1 is ‘adiabatic’, while the RW low-power-law with { a1
8 ‘nonadiabatic’. This rather unusual characteratization is nevertheless quite useful.
It captures the essence of our considerations above in distinguishing between static
vs dynamical finite size effect and static vs dynamic scaling [19]). As distinct from the
tather unique de Sitter case, where only one parameter, the scaling parameter s, is
needed for the description of the dynamics of spacetime and the field, in the general
class of RW dynamics, two parameters are required : the scaling parameter s which
describes inflation, and a dynamic parameter ¢ which describes the evolution of the
field different from the ‘static’ (eternal inflation) case. These two parameters appear
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also in the dynamical renormalization group theory description of dynamical critical
phenomena.

4, ‘Slow-roll’ as dynamical critical phenomena

Using the conceptual framework introduced above, one can understand why the
particular subclass of high-power-law expansion associated with an exponential
potential can hence be viewed as guasi-static, as it differs only slightly from the
exponential expansion in their qualitative behavior. It is in this context that one can
once again introduce the quasilocal approximation to derive the effective action for
scalar fields to depict this more realistic ‘slow-roll’ inflation, now carried out as a
quasilocal perturbation from the de Sitter space, which is viewed as effectively static,
A classical solution to (2) is given by [15]:

V() = Vyexp (-—;-gﬁ) a(t) = ay(1 + HyAt/y)? 3)
F

Here I, = 1/v/8rG is the Planck length, V, = [(3y —~ 1)/~](H}/8xG),» = 2/e?
and At = t — t,. The subscript 0 denotes the value at an initial time #, where
the de Sitter solution holds. Note also that for v+ — oo or € — 0, we get the
class of de Sitter solution a(t) = ayef(*~%). In that limit, the scaling parameter
s=[a(t+t5)/a(t)} = (14 o/v)" goes over to e, where o = HAL .

The time-dependence of the scalar field ¢ associated with the abave solutions of
V and a is given by [15]

&{t) =@y + /v /4rG In(14 HAt/¥) @

Now, following the rationale we suggested above, we can view this solution as a
‘quasi-static’ generalization of the de Sitter sclution. Expanding ¢(t) for small time
difference from i, we get,

63

$(1) — ¢y = (el Hy) At - (s z;Hg) (At + ... G)

Here we can identify the coefficients of the first two terms (At)™,n = 1,2 as the
leading coefficients in a quasi-local expansion of of the effective mass which involves
the background field [23]. After such an identification, it is easy to adopt the well-
established derivative expansion scheme for the calculation of the quantum effective
quasi-potential. The general result is given in [17]. There, as we recall, the effective
Lagrangian contains the ‘kinetic energy’ terms as well as the radiative corrections
arising from the varying background field. Details of the derivation and discussions
on the physical meaning of these results in ‘slow roll-over’ inflations are given in [27).
(Kay Pirk has recently derived a quantum solution to (3) [28].)
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5. Summary

Let me summarize the main points brought up in this talk by the following schematic
diagram:

Constant field in static or SCALING  Exponentjal expansion a = e

conformally static spacetimes — ‘Eternal inflation’

(Finite size effect) (Dynamical finite size effect)
Quasilocal approximation Derivative expansion

Slowly varying field in High power-law expansion a = ¢#

RW universe (Low power-law) — ‘Slow roll-over’

For slowly-varying background fields one can use the method of derivative
expansion to derive the quasilocal effective Lagrangian. Usually this makes sense
only for static (or conformally-static, like the RW) spacetimes. However, one can
view the special class of exponential expansion as effectively ‘static’. This can be
understood with the ideas of ‘dynamical finite size effect” and implemented by treating
inflation as ‘scaling’ transformations. The ‘slow roll-over’ type of phase transition used
in many inflationary models can be viewed as a quasi-static case, and derived as a
dynamic perturbation from the de Sitter universe. An example which this reasoning
can be applied to for the calculation of the effective ‘quasi-potential’ is the case of a
high-power-law expansion with an exponential potential for the inflaton field.

Acknowledgments

I would like to thank Professors W van Leeuwen and C van Weert for their hospitality
during this well-organized, efficiently-run, multi-faceted and colorful conference. This
report is based on work carried out jointly with Sukanya Sinha and Yuhong Zhang
with whom I have enjoyed many lively discussions. I would also like to thank Denjoe
O’Connor and Chris Stephens for sharing their important recent findings on the
renormalization group theory and its many interesting applications. Research in this
work is supported in part by NSF under grant PHY91-19726.

References

[1] Guth A 1981 Phys Reu D 23 347
[7] Linde A 1982 Phys Lert. 108B 389
Albrecht A and Steinhardt P J 1982 Phys Rev. Lert 48 1220
[3] Hu B L 1986 Proc. 4th Marcel Grossmann Meeting on General Relaivity (Rome, 1985) ed R Ruffini
{Amsterdam: Nortlhi-Holland)
[4] Hu B L and O'Connor D J 1987 Phys Rev D 36 1701
[5] O'Connor D J, Stephens C R and Hu B L 1990 4nn Phys, NY 190 310
[6] Hu B L and O'Connor D T 1986 Phys Rev Len. 56 1613
[77 Hu B L and O’Cornor D J 1986 Phys Rew D 34 2535
[B] Shore G 1980 Ann. Phys, NY 128 376
Hawking 8 W and Moss [ 1982 Phys Lert. 110B 35
Vilenkin A 1983 Nucl Phys. B 226 504



S100

5}
[10)
[11]

{12}
{13
4]
1151
{18

[
(8

[19]

120}

21}
22

(23}
(24}

{26}

127
{28

B L Hu

Allen B 1983 Nucl Phys. B 226 228

Ratma B 1985 Phys Rev D 31 1931

Corpwali I, Jackiw R and Tomboulis D 1974 Ffys Rev D 10 2428

O'Connor D and Stephens C R 1991 Nuel Phys. B 260 3652

O'Cannor D and Stephens C R 1993 Geometry the Renormalization Group and Gravity Mimer
Fesisehnift ed B L Hu, M P Ryan and C V Vishveshwara (Cambridge: Cambridge University
Press) 1o appear

Wald R M 1983 Pys Rew D 28 2148

Boucher W, Gibbops G W and Horowitz G T 1984 Phys Rev D 30 2447

Shen T C, Hu B L and O'Connor D J 1985 Plyr Rev D 31 2401

Lucchin F and Matarrese S 1985 Pgs Rev D 32 1316

Ho B L 1988 Proc. CAP-NSERC Sununer Inst in Theoretical Phyvics vol 11, ed F C Khanna, H
Umezawa, G Kunstatter and P Lee (Singapore: Wotld Scientific)

Sinha S and Hu B L 1989 Paps Rev T 38 2423

Hy B L and Zhang Y 1990 Coarse-Graining, Scaling, and Infation Uhiversity of Marviand Prepring
90-186

Hu B L 1991 Relativiy and Gravitation: Classical and Quansum: Proc. SILARG VI (Cocoyos, Mexico
1990} «d J C D' Gliva et of {Singapore: World Sciendific)

See, e.g, Hohenberg ¥ C and Halperin B 1 1977 Rev Mod Phys. 49 435

Ma 8 K 1976 Modern Critical Phenomena {(New York: Benjamin)

Kawasaki K and Guniun J 1976 Phys Rev B 13 4658

Cornwali T M and Bruinsma R 1988 Phys Ren D 38 3146

Ho B L, Paz J P and Ravaj A in preparation

Hu B L 1983 Phyr Len. 1238 i89

Hu B L and Chen L F 1985 Phys Lels 1608 36

Hu B L, and O'Canaor D J 1984 Phys Rew D 30 743

Moss I, Toms D T and Wright A 1992 Phys Rev D 46 1670

O'Connor [ and Stephens C R in preparation

Kadanoff L 1966 4Ann Phys, NY 2 263

Migdal A A 1975 Sov Phys—JETP 6% 810; 1437

Fu B L and Sinha § in preparation

Pirk K 1992 University of Marpland preprint



