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The generalized commutation relations (GCRs) extend the familiar Heisenberg
commutation relations and have garnered significant attention due to their broad
applicability. Various generalizations have been proposed and are currently
the subject of extensive investigation. It is crucial to scrutinize the physical
implications of these GCRs, which reveal intriguing and complex phenomena.
While the GCRs describe the relationships between observables, they solely
pertain to kinematics. The dynamics, on the other hand, is dictated by the
Hamiltonian operator H, which lacks a unique determination from fundamental
physical principles. By analyzing two distinct choices for H, it was discovered
that these GCRs naturally lead to phenomena such as variable speed of light,
modified dispersion relations, and a reduction in thermodynamic degrees of
freedom. These findings underscore the inherent interest and significance of
Maggiore’s GCRs.

The conventional Heisenberg uncertainty principle, which relates the uncertain-
ties in the position and momentum of a particle, can be extended in various ways
in multidimensional space. Maggiore introduced a generalized set of commuta-
tion relations (GCRs) between position operators Xi and momentum operators
Pj for three-dimensional space under specific assumptions. These assumptions
preserve the undeformed nature of spatial rotations and translations while al-
lowing for deformation in the position and momentum commutators controlled
by a parameter λ. Extending this to arbitrary dimensions, Maggiore’s GCRs
are given as:

[Xi, Xj ] = −ih̄f J̃ij , [Xi, Pj ] = ih̄fδij (1)

Here, h̄ = 2π is the reduced Planck constant, c0 = 3× 108 m/s is the speed
of light in vacuum, and m is the particle mass. The function f and its modified
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counterpart f̃ are determined by the deformation parameter λ and the particle’s
momentum P and mass m as follows:

f =
1 + λ2

h̄2

(
1 +

λ2P 2

h̄2 +m2c20

)
, f̃ =

λ2

4π2
(2)

These relations imply non-commutativity of space at scales ofO(λ) or smaller.
Kempf proposed another generalization where the position commutator van-
ishes, resulting in a commutative space. The energy and momentum scales set
by λ, denoted by E∗ and p∗, respectively, are given by:

E∗ = p∗c0 =
hc0
λ

√
mc20 (3)

In the low energy or temperature limit, E ≪ E∗, and in the high energy
or temperature limit, E ≫ E∗, the behavior of the system is determined by λ.
The kinematics are governed by the commutation relations, while the dynamics
is described by the Hamiltonian H. The velocity operator Vi for a particle is
given by:

Vi =
dXi

dt
=

i

h̄
[H,Xi] (4)

For free particles, H depends only on P 2 or equivalently P 2+m2. The speed
v of free particles is determined by the eigenvalues of Vi and P and is related
to the energy E via:

v(E) =

√∑d
i=1 v

2
i

p
=

p

E

√
p2 +m2 (5)

The statistical mechanics of such particles in a d-dimensional volume V
can be studied using the grand canonical ensemble approach. Thermodynamic
quantities like free energy (F ), pressure (P ), and internal energy (U) can be
calculated using standard expressions. The one-particle density of states g(E)
is given by:

g(E) =
Ωd−1V

h

1

v(E)
(6)

Here, Ωn represents the area of a unit n-dimensional sphere.
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To proceed with the analysis, one needs to express the variables p and f , in
terms of the energy E. This necessitates expressing them using the Hamilto-
nian H(p) or, equivalently, the energy E(p). However, as far as the current
understanding goes, there isn’t a physical principle that uniquely determines
the energy E(p) in the given context. In the absence of such a principle, one
can impose two conditions: first, that the energy E(p) approaches a finite value
as λ approaches to zero, and second, that E(p) approaches infinity as p ap-
proaches infinity. These conditions are reasonable from a physical standpoint
but do not uniquely determine E(p). Nevertheless, it’s found that by examin-
ing a few representative choices of E(p) which fulfill these conditions, one can
illustrate the general dynamical behaviors of the system and their dependence
on E(p). The implications of the generalized cosmic rays (GCRs) are negligible
in the low energy, low-temperature regime since E(p) is finite-valued. There-
fore, the focus is solely on the high energy, high-temperature limit, where the
dynamics governed by the GCRs become evident. Following, the analysis will
be on these dynamics for three specific choices of E(p). The dominant terms in
various quantities, up to numerical factors, suffice to demonstrate the system’s
dynamical features. For comparison, one also includes results for the standard
case (designated as 0) where λ = 0 and f = 1, specifically focusing on the high
energy, high-temperature limit where E ∝ p. These choices of E(p) are primar-
ily selected to elucidate the general dynamical features of the GCRs and their
dependence on E(p). The choices of E(p) demonstrate various ways in which
can be satisfied. Some of these choices may have natural origins. For instance,
choice 1 with n = 1 could stem from the first Casimir operator, while choice 2
with n = 1 might result from assuming the validity of the standard Hamiltonian
even when λ ̸= 0. Choice 2 with an integer n > 1 may be related to higher
derivative terms in an effective action. The choices presented mainly serve to
highlight the general dynamical features of the GCRs and their dependence on
E(p). Examining the general features of cλ(E) one can deduce the following
observations. The speed of light cλ(E) increases with the asymptotic growth of
E(p), leading to a decrease in g∗(E). In units where c0 = 1, cλ(E) approaches
1 for choice 1 with n < 1, equals 1 for choice 1 with n = 1, and diverges for
choice 1 with n > 1, as well as for choices 2 and 3. The physical implications
of cλ(E) ̸= 1 and its dependence on energy are discussed elsewhere. Mov-
ing on to the thermodynamic quantities, their behavior in the low-temperature
limit remains unaffected since E(p) is finite-valued. Therefore, one can focus
on the high-temperature limit, setting m = 0 and µ = 0 and considering cases
where a = −1 and a = 0, corresponding to particles obeying Bose–Einstein and
Maxwell–Boltzmann statistics, respectively. Results for the a = 1 case are for-
mally similar to those for a = 0 in this limit. Explicit evaluation of the partition
function lnZ is challenging, if not impossible. However, in the limit β ≪ λ, the
leading-order behavior of lnZ can be obtained relatively easily. One can derive
the temperature dependence of relevant quantities, such as −βF and βU . The
method used allows to extract the leading-order contributions to these quanti-
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ties, for the a = −1 and a = 0 cases, respectively. The temperature dependence
of −βF provides insights into the effective thermodynamic degrees of freedom in
the system. Several general features are shown as follows. The first is that the
reduction in the degrees of freedom increases with the faster asymptotic growth
of E(p). Furthermore, the degrees of freedom in choice 1 are formally equivalent
to those in the standard case but with an effective dimension deff = 1/n. Then,
compared to the standard case, the degrees of freedom are reduced in choices 2
and 3, and in choice 1 with n > 1/d, while they are increased in choice 1 with
n < 1/d. It occurs a reduction in degrees of freedom in choice 1 with n = 1
resembles that found in string theory at temperatures much higher than the
Hagedorn temperature (if λ ∼) string length. Also, the reduction in degrees of
freedom in the a = 0 case for choice 2 with any n resembles that found in lat-
tice theories with a finite number of Bose oscillators at each site, or in certain
topological field theories with general coordinate invariance restored at short
distances. Finally, considering w = P/ρ, where ρ = U/V is the energy density,
it’s observed that for perfect fluids in the standard case, w is constant and must
be less than 1 since the speed of sound vs < 1 in units where c0 = 1. However,
in the present case, w can exceed 1, allowing for vs to also exceed 1 but always
remaining less than cλ.

In the early stages of the universe, radiation dominated, characterized by a scale
factor a = −1 and following the Generalized Uncertainty Principle (GCRs).
This era’s evolution is described by standard equations considering radiation
pressure P and energy density ρ = U/V , where U is the internal energy and V
is volume. The line element in this scenario is given by:

ds2 = −c2λdt2 +A2(t)

d∑
i=1

dXidXi (7)

Where c is the speed of light, λ is a parameter, t is time, A(t) is the scale
factor, and d is the number of spatial dimensions. The comoving horizon radius
rh at a time t0 > 0 is defined as:

rh =

∫ t→0

t0

dt
cλ

A
(8)

Here, t = 0 represents the big bang singularity time. By considering temper-
ature T as the independent variable, the values of t, A, and rh can be calculated
to the leading order. K is given by:
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K ≡ 1− 2

d(n+ 1)
− 2(n− 1)

n
(9)

Following, several general features are shown. As T approaches infinity, and
A approaches zero as t approaches zero, indicating a big bang singularity. How-
ever, for specific choices of parameters, A(t) decreases slower compared to the
standard case. As T tends to infinity, for certain parameter choices, rh tends
to infinity as well. This occurs for choice 1 if K < 0, which is equivalent to
n > n∗, where n∗ = d− 2+

√
(d− 2)2 + 8d2/(2d). It’s notable that 1 ≤ n∗ ≤ 2

for 1 ≤ d ≤ ∞. Thus, rh tends to infinity for choice 1 if n ≥ 2. Further-
more, if cλ(E) increases at least as fast as

√
λE in the limit λE → ∞, then

rh remains finite for choice 1 with 1 < n < n∗, despite the increase in cλ(E)
with energy. This implies that the divergence of rh is not solely determined
by the increase in the speed of light with energy; the scale factor A must also
approach zero at a sufficiently slow rate. Thus, photons with a speed cλ(E)
close to unity have enough time to establish causal contact within the horizon
before encountering the singularity. By studying the dynamical features of the
GCRs and their dependence on energy E(p) through different choices, one can
do several observation. The dynamical quantities are largely independent of the
number of spatial dimensions. Then, the black body spectrum converges to a
limiting form independent of the choice of E(p). While the speed of light varies
with energy, with a larger speed for faster growth of E(p), resulting in a smaller
one-particle density of states. Further, thermodynamic relations undergo signif-
icant modifications, with the effective degrees of freedom depending on energy,
and their reduction being faster for higher growth rates of E(p). Also, in the
early universe, the scale factor evolves slower, and the horizon size increases
faster with a higher growth rate of E(p), leading to a tendency for the horizon
to expand indefinitely. Given these findings, further investigations into GCRs
and their implications, particularly regarding modifications to standard Lorentz
invariance and their potential impact on cosmology and black hole physics, are
deemed promising. This could lead to a more comprehensive understanding
and potentially a coordinate-invariant formulation of GCRs, facilitating rigor-
ous studies of their cosmological and astrophysical consequences.
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